Two ‘abnormal’ clutches of Scaled Antpitta *Grallaria guatimalensis*

Published descriptions of *Grallaria* (Grallariidae) eggs are all relatively consistent, usually described as some shade of blue, with few or no markings. Scaled Antpitta *G. guatimalensis* is no exception, with the following published records: pale blue (nominate); deep blue or ‘robin’s-egg blue’ (*G. g. ochraceiventris*; nominate); blue-green (nominate; ssp.); turquoise-blue (*G. g. regulus*); or simply blue (ssp.). Rowley’s eggs were described as ‘bluish’.
by Howell & Webb10, but equally subjective observations by HFG of photographs and museum specimens suggest that, across its range, the Scaled Antpitta lays blue eggs which may or may not vary strongly in hue. Here we describe two clutches observed in situ that represent the first reports of Scaled Antpittas (or any Grallaria) laying unpigmented eggs.

RVH found the first clutch (nominate guatimalensis) on 9 August 2008 at San Juan, Huazalingo, Hidalgo, Mexico (20°59'N 98°30'W; 1,260 m). Details of the nest location have been published previously25, but the eggs were not described. This clutch, of the nominate subspecies, comprised two immaculate white eggs, but no measurements were taken.

HFG found the second clutch (G. g. subgularis) on 5 March 2014 at the Utuana Reserve of the Jocotoco Foundation, prov. Loja, Ecuador (79º45'W 04º22'S; 2,600 m). As so few nests of grallariids are described7, both the nest, and the two-egg clutch, are described below. Like the Mexican clutch described above, both eggs were immaculate white (Fig. 1). They measured 31.6 × 25.0 mm and 30.7 × 25.0 mm and weighed 10.7 g and 10.2 g, respectively. The open-cup nest was 1.6 m above ground on top of a c.45º angled log, 15 cm in diameter. It was nestled into the ample ferns and bromeliads growing on the log and, due to the angled nature of the substrate, was considerably taller at the lower end to create a level nest rim and even cup. Externally, at the lower end, the cup was 14 cm tall, but only 3.5 cm tall at the upper end. Overall external diameter was 22 cm, with the overhanging portions being supported by epiphytic vegetation. The internal measurements of the cup were 9.5 wide by 6.5 deep. The bulky cup was formed primarily of humid leaves and small sticks, with a rather loose internal cup of dark rootlets.

Apart from the white eggs, the nests described here are largely similar to those described from elsewhere in the species’ range18. Naturalists have been puzzled by the widespread occurrence of blue-pigmented eggs across the avian phylogeny for many years, especially given their apparent obviousness to predators. Adaptive hypotheses for blue eggs proposed in the past include thermoregulation1, aposematism23, crypsis12 and egg recognition20. One relatively new hypothesis that has acquired some support, is sexual-signaling hypothesis9,15, which postulates that egg coloration is a reliable signal of female quality because the pigments responsible for blue-green shell pigments (biliverdins) are valuable antioxidants11, and only healthy females should be able to afford to include biliverdins in their eggshells during the stressful process of egg formation. The debate continues, however, and has spawned a rich literature exploring, among other aspects, the sources of dietary anti-oxidants and their effect on the deposition of biliverdins in eggshells, the heritability of eggshell coloration, the nature of the signals that blue eggs convey to mates, and the effect of egg coloration on male parental care2,13–16,21,26. With so few clutches known for Grallaria antpittas, it remains to be seen if variation in blue pigmentation is more widespread than currently known, and if potential variation in the intensity of blue coloration may play a role in sexual signaling or parental care in these poorly studied Neotropical birds.

Acknowledgements
HFG thanks Field Guides Inc., John V. & the late Ruth

Figure 1. Nest and eggs of Scaled Antpitta Grallaria guatimalensis in south-west Ecuador showing immaculate white eggs (Harold F. Greeney)
Ann Moore, Matt Kaplan, the Population Biology Foundation, the Jocotoco Foundation, and Cabañas San Isidro for supporting his field work. The staff of Utuana and Jorupe lodges facilitated access to Jocotoco Foundation reserves and Mort Isler provided useful comments on the submitted draft.

**References**


**Short Communications**

**Yanayacu Biological Station & Center for Creative Studies, Cosanga, Napo, Ecuador; c/o 721**
Foch & Amazonas, Quito, Ecuador. 
E-mail: revmmoss@yahoo.com.

Raúl Valencia-Hervertth 
Instituto Tecnológico de Huejutla. 
Km 5.5 carretera Huejutla– 
Chalahuiyapa, AP 94, Huejutla de Reyes, Hidalgo, 43000, México.

Received 12 September 2015; final revision accepted 3 December 2015; published online 25 February 2016